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Nonlocal theory for heat transport at high frequencies
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We develop a nonlocal theory for heat conduction under high-frequency temperature fields and apply the
theory to explain reductions of the apparent thermal conductivity observed in recent experiments. Our nonlocal
theory is an analytical solution of the Boltzmann transport equation for phonons in a semi-infinite solid, similar
to a prior nonlocal theory for heat conduction under a high-temperature gradient but subjected to periodic
heating at the surface. The boundary condition of periodic heating, as opposed to prior calculations of heating
by a single laser pulse, better mimics time-domain thermoreflectance (TDTR) and broadband frequency-domain
thermoreflectance (BB-FDTR) measurements. We find that, except for pure crystals at high frequencies, the
effective thermal conductivity derived using the nonlocal theory compares well with calculations of a modified
Callaway model that includes an upper limit on the phonon mean-free path at twice the thermal penetration
depth. For pure crystals, however, the effective thermal conductivity derived from the out-of-phase calculations
are independent of frequency, in agreement with prior TDTR measurements, due to the countereffect of reduced
heat flux and diminished relative phase between the heat flux and temperature oscillations at high frequencies.
Our results suggest that empirical interpretation of ballistic phonons not contributing to heat conduction is not
general and can only be applied to measurements on alloys and not pure crystals, even when a large laser spot
size is used in the experiments and the interfacial thermal resistance is negligible.

DOI: 10.1103/PhysRevB.90.205412 PACS number(s): 63.20.dd, 44.05.+e, 72.15.Eb

I. INTRODUCTION

On large length scales, thermal energy transport in solids
is governed by Fourier’s law of heat conduction, J =
−�(∂T /∂x), where J is the heat flux, � is the thermal
conductivity and ∂T /∂x is the temperature gradient. Fourier’s
law is a local theory: heat transport depends only on the
material properties and temperature gradient at a single point
in space, and is not affected by properties and temperature
profiles at other locations. The validity of a local theory breaks
down, however, when a significant portion of heat carriers is
not in equilibrium with other heat carriers and thus is not driven
by the local temperature gradient. A notable example of the
violation of a local theory, which has been extensively investi-
gated experimentally [1–5] and theoretically [6–10], is ballistic
energy transport by nonequilibrium phonons, observed in
nanostructures with characteristic lengths shorter than phonon
mean-free-paths. Another example of breakdown of the local
theory is transient cooling under a large temperature gradient
(e.g., generated by laser pulses), when phonon mean-free
paths are long compared to the length scale over which the
temperature gradient changes. In this case, the measured [11]
and calculated [12–14] heat flux is found to be smaller than
predictions made using the local theory.

In principle, ballistic phonon transport can also occur for
heat conduction at high oscillation frequencies, in which the
characteristic lengths (i.e., the thermal penetration depths,
d = √

�/(πCf )., where C is the volumetric heat capacity
and f is the frequency of the oscillating temperature field)
can be shorter than the mean-free paths (�) of the dominant
heat carriers. In fact, recent experiments [15–18] indicate
that the apparent thermal conductivity of crystalline alloys
and a particular form of amorphous Si is reduced from the
steady-state values when an oscillating temperature field of

MHz frequency is used in measurements. We previously
attributed [15] this finding to the fact that long-wavelength
phonons are not in equilibrium and traverse ballistically across
the penetration depth (� > d), and thus do not contribute
to the apparent thermal conductivity measured by TDTR.
We thus proposed that the frequency dependence of thermal
conductivity can be applied as a convenient probe [15] of the
mean-free paths of phonons in alloys and amorphous Si.

For pure crystals, however, an apparent discrepancy is
observed between prior measurements of Si by time-domain
thermoreflectance (TDTR) as a function of modulation fre-
quency and broadband frequency-domain thermoreflectance
(BB-FDTR). Using BB-FDTR, the thermal conductivity of
Si at 10 MHz is reduced [18] by >30%, but using TDTR,
the measured thermal conductivity is independent [15] of
modulation frequency within a frequency range of 0.1 <

f < 10 MHz. If our prior empirical interpretation [15] were
correct, since d = 1.7 μm at 10 MHz, this lack of frequency
dependence of the TDTR measurement of Si suggests that
phonons with � > 1.7 μm do not contribute significantly to
heat conduction in Si; this conclusion is inconsistent with
recent first-principle calculations [19,20]. To address this
discrepancy, Mingo et al. [21] suggested that the reduction
in the measured thermal conductivity could instead be due
to insensitivity of TDTR measurements to phonons with
�anh > 3d, where �anh is the mean-free path of phonons due to
anharmonic scattering only. Their calculations using the fitted
cutoff of 3d agree well with the frequency-dependent TDTR
measurements.

Wilson and Cahill [22] posited that the reduced appar-
ent thermal conductivity in the through-plane direction of
semiconductor alloys is due to an inhomogeneous effective
thermal conductivity near the surface of the samples that is
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caused by the reflection and transmission of long mean-free-
path phonons at the interface. However, rather than using
a nonlocal model for thermal transport to directly predict
the frequency-domain thermal response, they instead used a
nonlocal model to derive effective thermal conductivities, and
then used the effective thermal conductivities to generate the
frequency-domain thermal response.

Wilson and Cahill [23] have also proposed a two-channel
model capable of explaining the frequency dependence of
the apparent thermal conductivity derived from TDTR mea-
surements in terms of an interfacial nonequilibrium thermal
resistance. While the two-channel model provides insight into
the effect that different thermal boundary conditions have on
the heat carried near the surface by different groups of phonons,
it does not include nonequilibrium effects that result from
shortened length scales; furthermore, dividing the spectrum
of phonons into only two groups is a large simplification.
The Boltzmann transport equation was solved by Minnich
et al. [13,14] to investigate the suppression of apparent thermal
conductivity measured by TDTR for small laser spot sizes and
high frequencies; these authors applied, however, a simplified
boundary condition (heating by a single pulse) that does not
fully capture the physics of TDTR measurements, see the
discussion in Sec. III.

In this paper, we provide a theoretical framework to predict
when the effective thermal conductivity is reduced at high
frequencies of oscillating temperature fields. We develop a
nonlocal theory for heat conduction at high frequencies, and
apply the nonlocal theory to a semi-infinite solid periodically
heated at the surface. We assume negligible interfacial thermal
resistance at the surface and calculate the heat flux by both
ballistic and diffusive phonons from this approximation to the
Boltzmann transport equations. We compare calculations of
the nonlocal theory to calculations of a modified Callaway
model that excludes either ballistic (� > 2d) or harmonic
(�anh > 3d) phonons. We find that for alloys, the suppression
of the apparent thermal conductivity at high frequencies is
due to reduced heat flux by nonequilibrium phonons, and
this nonlocal effect can be approximately reproduced. For
crystals at high frequencies, however, the effective thermal
conductivity derived from the temperature oscillations that
are 90° out of phase with the heat source are essentially
independent of the heating frequency. This result is consistent
with prior TDTR measurements that found the apparent
thermal conductivity of Si to be independent of frequency and
thus cannot be approximated by calculations of the Callaway
model that omit ballistic phonons with an empirical � > 2d
cutoff. Our results provide insights for understanding thermal
conductivity measurements by TDTR [15] and BB-FDTR
[18].

The paper is organized as follows. In Sec. II, we adapt
the time-domain nonlocal theory by Mahan and Claro [12]
to develop a nonlocal theory for heat conduction under high-
frequency heating. We derive an expression for heat flux by
nonequilibrium phonons that depends on a weighted average
of temperature gradients as a function of the depth from the
surface. In Sec. III, we discuss the physical meanings of TDTR
and BB-FDTR measurements and thus establish a correct form
of boundary conditions for our nonlocal model to meaningfully
represent the TDTR and BB-FDTR measurements. In our

implementation of the nonlocal model, we apply the numerical
schemes as summarized in Sec. IV and a modified Callaway
model as discussed in Sec. V. In Sec. VI, we compare the
predictions using the nonlocal theory to calculations by the
modified Callaway model, using exactly the same distribution
of phonon mean-free paths. We summarize our findings in
Sec. VII.

II. FORMULATION OF THE NONLOCAL THEORY FOR
HEAT TRANSPORT AT HIGH FREQUENCIES

To develop a nonlocal theory for heat conduction at high
heating frequencies, we build on a nonlocal theory [12]
developed by Mahan and Claro for heat conduction with large
thermal gradients and heat fluxes, and consider a semi-infinite
solid being heated periodically in time at the surface (z = 0) at
frequency f ; see Fig. 1. We only focus on understanding the
frequency dependence of the thermal conductivity with large
laser spot sizes, and do not attempt to address the dependence
of the apparent thermal conductivity on finite laser spots
observed by Minnich et al. [24]. Under such conditions, the
heat flow is primarily one dimensional [22].

We assume that heat is carried in the semi-infinite solid
predominantly by acoustic phonons, which are only partially
in equilibrium with other phonons as a result of the high
frequency of the heat source. Thus, to derive the population
of (and subsequently the heat flux by) the acoustic phonons,
we need to solve the Boltzmann transport equation for each
phonon mode,

∂Nq

∂t
+ vq · ∇Nq = −Nq − N0

q

τq

(1)

where the subscript q denotes each phonon mode with
frequency ω and polarization j , N is the phonon distribution
function, N0 = kBT /�ω is the Planck distribution at high
temperatures, τ is the total relaxation time of phonons, v is
the phonon group velocity, � is the reduced Planck constant,
and kB is the Boltzmann constant.

To simplify and solve the Boltzmann transport equation
[Eq. (1)], we assume that heat flow is one dimensional in
the z direction and define m = cos θ , where θ is the angle
between the z axis and phonon wave vector; see Fig. 1. We also
define a pseudotemperature for the nonequilibrium phonons,
T P

q = Nq�ω/kB ; the pseudotemperature T P
q (z,t,m,q) is a

function of position z, time t , direction m, and phonon mode q.
Since we only consider periodic heating of f < 100 MHz, the
relaxation time of the dominant heat carrying phonons in most
materials, τ (<10−9 s), is much shorter than 1/(2πf ). Thus we
ignore the time-dependent term in Eq. (1). This assumption is
consistent with our previous assertion [15] that the reduction
of the thermal conductivity of semiconductor alloys at heating
frequencies <20 MHz is primarily an effect of length scales,
i.e., mean-free paths and thermal penetration depths, and not
an effect of time scales, i.e., phonon lifetimes and the period
of the modulated heat source.

We performed the following calculation to confirm that
the omission of the time-dependent term does not create
significant error. We assume that the error of this omission
is on the order of φ = 2πf τ for each phonon mode with
τ (ω) < 1/(2πf ) and on the order of unity (φ = 1) for each
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FIG. 1. An illustration of a semi-infinite solid (z > 0) being periodically heated on the surface (z = 0). We assume that phonons in z < 0
are all in equilibrium with Planck distribution within the time scale of interest. The circles represent two heat-carrying phonons with m < 0 and
m > 0; the arrows represent the hypothetical phonon trajectory. Ij (|z − z′|) represents the percentage of flux of unscattered phonons reaching
z directly from z′; Ij (|z + z′|), represents the percentage of flux of unscattered phonons reaching z from z′ via reflection at the surface.

phonon mode with τ (ω) > 1/(2πf ). The overall error is then
calculated by weighting the error for each mode by the thermal
effusivity

√
�(ω)C(ω) of that mode. (TDTR essentially

measures the thermal effusivity of the samples; see Sec. III.)
Thus, we estimate the error incurred by the omission as∑

j

∫ √
�(ω)C(ω)φ(ω)dω/

∑
j

∫ √
�(ω)C(ω)dω, integrated

over all the phonons in our modified Callaway model (see
Sec. V) and summed over all polarizations j . The
uncertainty is only ∼3% at f = 100 MHz and ∼1%
at f = 20 MHz, for the hypothetical Si with 	 =
2 × 10−4 and 	 = 2 that we consider in Sec. V.

Applying the simplifications described above to Eq. (1), we
derive

T P
q + vqmτq

∂T P
q

∂z
= T . (2)

T (z,t) is the equilibrium temperature at position z and time t ,
and is defined as the average of T P

q (z,t,m,q) for all phonons.
Equation (2) is an inexact first-order ordinary differential

equation [25] that can be solved analytically. Applying the
boundary conditions T P

q (0,t,m,q) and T (0,t) at z = 0, the
solution [12] of Eq. (2) gives

T P
q (z,t,m,q) = T (z,t) + exp

(
−

∫ z

0

dz′

vqmτq (z′,t,q)

) [
T P

q (0,t,m,q) − T (0,t)
] −

∫ z

0
dz′ ∂T (z′,t)

∂z′ exp

(
−

∫ z

z′

dz′′

vqmτq (z′′,t,q)

)
,

(3)

where z′ and z′′ are variables of integration.
The pseudotemperature of the phonon modes at z = 0, T P

q (0,t,m,q) in Eq. (3), is not known and needs to be determined.
Since T P

q (0,t,m,q) depends on many factors (e.g., transmission and scattering of phonons at boundaries, and coupling between
phonons), we do not attempt to derive a general expression for T P

q (0,t,m,q). Instead, we propose a simple and convenient form of
T P

q that gives a physically meaningful solution to Eq. (2). For this purpose, we separately consider phonons that propagate to the
surface (m < 0) and from the surface (m > 0) [12]. For the backward propagating phonons (m < 0), the exponential expression
in the second term of Eq. (3) approaches infinity at large z. In order to have the second term of Eq. (3) vanish so that T P

q remains
finite, we follow Mahan and Claro [12] and choose

T P
q (0,t,m,q) = T (0,t) +

∫ ∞

0
dz′ ∂T (z′,t)

∂z′ exp

(
aq(z′,t,q)

m

)
(m < 0), (4a)

where aq(z,t,q) = ∫ z

0
dz′′

vqτq (z′′,t,w) is the distance z from the surface normalized by the mean-free paths �q(T ,q) = vqτq of phonons.

Substituting Eq. (4a) into Eq. (3), we derive an expression for T P
q (0,t,m,q),

T P
q (z,t,m,q) = T (z,t) +

∫ ∞

z

dz′ ∂T (z′,t)
∂z′ exp

(
−aq(z,t,q) − aq(z′,t,q)

m

)
(m < 0). (4b)

To derive an expression for phonons that propagate away from the surface (forward propagating phonons, m > 0) using an
assumption that physically represents the TDTR and BB-FDTR experiments, we assume that the semi-infinite solid is coated
with a thin layer of metal at z < 0, with phonons in the metal layer always in thermal equilibrium. We further assume that
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the interfacial thermal resistance of the metal/solid interface is negligible and thus all phonons from the metal transmit across
the interface without being scattered. In such a scenario, the principle of detailed balance dictates that the average number of
phonons of ω at z = 0 (including both phonons with m < 0 and m > 0) is given by the Planck distribution. Then, using Eq. (4)
for phonons with m < 0, we derive the pseudotemperature T P

q for m > 0 as

T P
q (0,t,m,q) = T (0,t) −

∫ ∞

0
dz′ ∂T (z′,t)

∂z′ exp

(
−aq(z′,t,q)

m

)
(m > 0), (5a)

T P
q (z,t,m,q) = T (z,t) −

∫ z

0
dz′ ∂T (z′,t)

∂z′ exp

(
−aq(z,t,q) − aq(z′,t,q)

m

)

−
∫ ∞

z

dz′ ∂T (z′,t)
∂z′ exp

(
−aq(z,t,q) + aq(z′,t,q)

m

)
(m > 0). (5b)

Note that while Eq. (4) is similar to Eqs. (12) and (13) in
Ref. [12], Eq. (5) is new and not previously derived.

Using the expressions for T P
q (z,t,m,q) in Eqs. (4) and (5),

we derive a new expression for one-dimensional (1D) heat flux
in the semi-infinite solid by nonequilibrium phonons, J (z,t).
We start with expressing J (z,t) by counting the total heat
carried by all phonon modes of three polarizations j ,

J (z,t) =
∑

j

∫
d3q

(2π )3 vq

�ω

exp
(
�ω/kBT P

q

) − 1
. (6)

For simplicity, we assume a truncated linear dispersion
[15] for phonons, and include only acoustic phonons with
frequency below a cutoff frequency ω

j

0 for polarization j ; ω
j

0
is estimated from the Brillouin-zone boundary. Details of this
modified Callaway model are given in Sec. V. Using this
scheme, we only include �10% of total available phonon
modes in the calculations [26], and implicitly assume that
acoustic phonons near the Brillouin zone and optical phonons
only significantly contribute to heat capacity but not heat
transport. We assume that all phonons considered in the
model travel at the speed of sound. As we did in solving the
Boltzmann transport equation, we assume that temperatures
are sufficiently high for all phonons (kBT P

q � �ω); by
calculating the thermal conductivity of Si with and without
the high-temperature assumption, we estimate that the error
induced by this assumption is ∼13%. We also assume small
perturbations (T P

q ≈ T at all locations z), so that �q is
independent of z and t and aq(z,t,q) = z/�q . Then, J (z,t)
becomes

J (z,t) = −
∑

j

(
ω

j

0

)3
kB

24π2v2
j

∫ ∞

0
dz′ ∂T (z′,t)

∂z′

× [Ij (|z − z′|) + Ij (|z + z′|)], (7)

where the subscript j represents the polarization of phonons
and Ij (z) is the percentage of flux of unscattered phonons after
the phonons traverse a normalized distance of z/m�,

Ij (z) = 6(
ω

j

0

)3

∫ ω
j

0

0
ω2dω

∫ 1

0
mdm exp

(
− |z|

vjmτ

)
. (8)

When z/m� ≈ 0, Ij (z) ≈ 100%, i.e., most phonons
remain unscattered when the distance traversed is small
compared to the mean-free paths of the phonons �. On the
other hand, when z/m� � 1, Ij (z) ≈ 0, i.e., most phonons

are scattered when the distance traversed is much larger than
the mean-free paths of the phonons �.

We obtain the derivative of J (z,t) with respect to distance
z by differentiating Eq. (7),

∂J (z,t)

∂z
= −

∑
j

(
ω

j

0

)3
kB

24π2v2
j

∫ ∞

0
dz′ ∂

2T (z′,t)
∂z′2

× [Ij (|z − z′|) − Ij (|z + z′|)]. (9)

Our Eqs. (7) and (9) are similar to Eq. (19) in Ref. [12], but are
more general. In Ref. [12], the authors assumed a simplified
expression for the relaxation times right from the beginning
of their derivation and thus the derived heat flux is only valid
for the assumed relaxation times. By contrast, Eqs. (7) and (9)
are general for any expressions of relaxation times within the
framework of the relaxation time approximation (RTA), which
can be readily incorporated into our nonlocal model. Also, we
derive Eqs. (7) and (9) from realistic boundary conditions,
while in Ref. [12], the boundary conditions were arbitrarily
applied for the sake of convenience. Last, but importantly,
we express Eqs. (8) and (9) in a physically meaningful form
that can be simplified to the Fourier’s law in the limit of
low heating frequency, as discussed below. For example, our
Ij (z) represents a percentage of unscattered phonons, but
in Ref. [12] I (u) is a mathematical expression with limited
physical meaning.

It is interesting to note that starting from an approximation
to the Boltzmann transport equation for nonequilibrium
phonons, we derive an expression for heat flux that depends not
only on the local temperature gradient, but also on temperature
gradients at all locations; see the integral in Eq. (7). To further
elucidate this point, consider the heat flux at a location z in the
semi-infinite solid; see Fig. 1. According to the nonlocal theory
described by Eq. (7), heat flux is proportional to the weighted
average of temperature gradients. The integrand in Eq. (7) is
the product of the temperature gradient, ∂T /∂z′, at point z′,
and a weighting term Ij (|z − z′|) + Ij (|z + z′|), representing
the percentage of the flux of phonons that remain unscattered
after traveling directly from z to z′, Ij (|z − z′|), or artificially
through reflection at the surface, Ij (|z + z′|), as illustrated in
Fig. 1. We emphasize that the reflection at the surface does not
physically occur, but instead is a result of the phonon exchange
that we assume at the interfaces. Due to the weighting term,
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heat flux is only sensitive to ∂T /∂z′ at a location close to z, in
which Ij (|z − z′|) � 0 or equivalently |z − z′| ≈ �.

We consider solving the temperature profile of the semi-
infinite solid subjected to periodic heating of frequency f at
the surface using Eq. (7). At low f , ∂T /∂z′ within |z − z′| ∼ �

is approximately constant for dominant heat-carrying phonons,
and thus the integrand converges to the local temperature
gradient, i.e., Fourier’s law. At high f , however, ∂T /∂z′ within
the distance |z − z′| ∼ � changes substantially, and thus the
contribution of temperature gradients from other locations
cannot be ignored. The reduction of heat flux due to the
nonlocal effect is discussed in Sec. VI.

III. EFFECTIVE THERMAL CONDUCTIVITIES AND
HIGH-FREQUENCY LIMITS OF TDTR AND BB-FDTR

MEASUREMENTS

Finally, we derive the effective thermal conductivity at
high frequencies by solving the corresponding heat flux and
temperature oscillations on the surface of the semi-infinite
solid (z = 0) using the nonlocal theory. The derived effective
thermal conductivities are intended to provide insights into
TDTR and BB-FDTR measurements.

In the experiments, the structure of a typical sample is a
metal film transducer, with a thickness on the order of 100 nm,
deposited on top of the sample under study. Unfortunately, due
to this two-layer structure, quantitative comparison between

calculations of the nonlocal theory and the measurements
requires a method for taking into account the thermal mass
of the transducer (layer 1) and the thermal conductance of the
interface between the transducer and the sample (layer 2). In
the limit of high modulation frequencies (f � �/(C · w2

0),
where w0 is the 1/e2 radius of the laser beams), and taking into
account that �1/L1 � G in most experiments, the weighted
average of the temperature distribution [27] measured in the
frequency domain by the probe beam can be approximated as


T (f ) = P

πw2
0

(
1/γ2 + 1/G

1 + i2πf C1L1 (1/G + 1/γ2)

)
, (10)

where P is the amplitude of the absorbed heat, G is the thermal
conductance of the interface between layer 1 and layer 2,
L1 is the thickness of the metal transducer, and the thermal
conductivity �n, and γn = √

i2πf Cn�n are properties of
layer n.

In TDTR measurements, the frequency components picked
up by the lock-in amplifier are at m/τ ± f , where m is an inte-
ger, 1/τ is the laser repetition rate, and f is the modulation fre-
quency [27]. We further assume that the modulation frequency
f is sufficiently low that f < G2/(2π�2C2) and the thermal
conductance is moderately low so that G <

√
2π�2C2/τ

(i.e., for Si, f = 10 MHz and G = 200 MW m−2 K−1 can
simultaneously satisfy both conditions) and Eq. (10) can be
further simplified. We then approximate the in-phase (Vin) and
out-of-phase (Vout) signals picked up by the rf lock-in amplifier
in TDTR measurements [27] as

Vin = A

∞∑
m=−∞

[
T (m/τ + f ) + 
T (m/τ − f ) exp (i2πmt/τ )],

Vout = −iA

∞∑
m=−∞

[
T (m/τ + f ) − 
T (m/τ − f ) exp (i2πmt/τ )],

(11)


T (m/τ ± f ) = P

πw2
0

√
i2πf �2C2

if m = 0

= P

πw2
0

(
1

G + i2π (m/τ ± f ) C1L1

)
if m 	= 0,

where A is a proportionality constant independent of fre-
quency.

Since f 
 m/τ in TDTR measurements for all terms
except m = 0, first-order expansion of terms with m/τ ± f

in Eq. (11) leads to linear terms containing (1 ∓ f

m/τ
). Thus,

for Vin, the ±f terms cancel due to the infinite summation of

T (m

τ
+ f ) and 
T (m

τ
− f ) and only real terms at frequen-

cies of m/τ remain. In the time domain, this corresponds to
in-phase temperature decay at the sample surface after being
heated by a train of unmodulated laser pulses at a repetition
rate of 1/τ . For high thermal conductivity substrates such as
Si, the temperature decay is mainly governed by the thermal
conductance of the transducer/metal interfaces as well as the
heat capacitance of the transducer layer as indicated by the 
T

expression in Eq. (11). As a result, in-phase TDTR signals

are primarily used to derive G. On the other hand, Vout is
dominated by two imaginary terms at frequency f and −f

after the infinite summation in Eq. (11). In the time domain, this
corresponds to out-of-phase temperature oscillations induced
by sinusoidal, continuous heating at the modulation frequency
f . Thus, in TDTR, the thermal conductivity is derived pre-
dominantly from the out-of-phase temperature response at f ,
not from cooling of the sample surface after being heated by a
single laser pulse, as commonly misunderstood and previously
applied [13,14].

For BB-FDTR measurements, the thermal conductivity
is derived from the phase shift (φ) between the periodic
heating and the temperature oscillations at the sample surface.
To correlate the measured φ to the temperature oscillations
(
TS = |
Tmax|eiθS ) in the substrate that we calculate in this
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paper, we substitute γ2 = |γ2|eiθ2 in Eq. (10) and derive
φ = φ1 − φ2,

φ1 = tan−1

( −sin (θ2) / |γ2|
1/G + cos (θ2) / |γ2|

)
, (12)

φ2 = tan−1

(
2πf C1L1 [1/G + cos (θ2) / |γ2|]

1 + 2πf C1L1sin (θ2) / |γ2|
)

,

where φ1 is the phase of the numerator and φ2 is the phase of
the denominator in Eq. (10).

When heat conduction obeys the Fourier’s law, θ2 is always
π /4. If the frequency f is sufficiently small, the phase shift

can be simplified as φ = −π
4 + γ2√

2G
−

√
πf C2

1 L2
1

C2�2
, the phase

shift measured by BB-FDTR is not a constant even under the
Fourier’s law due to the thermal mass of the transducer layer.
When the nonlocal theory of heat conduction is applied to the
substrate, the phase in the substrate (θS) is no longer −π/4. The
phase φ can still be calculated using Eq. (12) by substituting
cos(θ2)/|γ2| in the equation with in-phase response of the
temperature oscillation in the substrate calculated using the
nonlocal theory and substituting sin(θ2)/|γ2| with the out-of-
phase response. Thus, φ depends on both the in-phase and
out-of-phase of the temperature oscillations in the substrate,
in a rather complicated manner.

In this paper, we intend to understand the frequency
dependence of the apparent thermal conductivity measured by
TDTR and BB-FDTR through calculations of the temperature
responses in the substrate using the derived nonlocal theory of
heat conduction. In our calculations, we apply either a periodic
heat flux or a periodic temperature oscillation at the surface
of the semi-infinite solid, and monitor the corresponding
temperature oscillation or heat flux. If Fourier’s law of heat
conduction is obeyed, the corresponding amplitudes of the heat
flux and temperature on the surface Jmax and 
Tmax are related
by Jmax


Tmax
= √

2πf C�. We thus define an effective thermal
conductivity (�amp) from the amplitude of the oscillations;
see Eq. (13a). �amp, however, is not very useful to understand
TDTR and BB-FDTR measurements, because, as explained
earlier, TDTR is sensitive to out-of-phase response while
BB-FDTR is sensitive to both in-phase and out-of-phase
responses. We thus define two additional effective thermal
conductivities from the out-of-phase (�out) and in-phase (�in)
of the calculated temperature oscillations,

�amp = (Jmax/
Tmax)2/ (2πf C) , (13a)

�out = �amp/(2sin2φ), (13b)

�in = �amp/(2cos2φ), (13c)

where φ is the phase between the heat flux and temperature in
the substrate. We compare these effective thermal conductivi-
ties to calculations of a modified Callaway model (see Sec. V)
to provide insights to the frequency dependence of the apparent
thermal conductivity measured by TDTR and BB-FDTR.

IV. NUMERICAL IMPLEMENTATION SCHEME

Since the heat flux equation is nonlocal and cannot be
solved analytically, �amp, �out, and �in can only be derived
numerically. We thus discretize a semi-infinite solid using a
graded mesh and numerically solve Eqs. (7) and (9) for the
semi-infinite solid using a fully implicit scheme. We truncate
the semi-infinite solid at z = 10d, where d is the thermal
penetration depth. Since the exact temperature oscillations
after 10d are not important, we approximate the temperature
oscillations at 10d using the analytical classical solution [28],


T = Jmax exp (−x/d)

× cos (2πf t − π/4 − x/d) /
√

2πf C�SS, (14)

where �SS is the thermal conductivity of bulk solids under
a steady-state condition. To improve computational efficiency
of our numerical model, we discretize the semi-infinite solid
using a graded mesh for z < 5d and a uniform mesh for
z > 5d; see Fig. 2. With the graded mesh, finer meshes are
applied to regions where the temperature gradient is steeper
and thus the accuracy of our computation is improved with
the same amount of computation effort. We set the size of
the first control volume (labeled “0”) as 
z0/2, and the size
of the subsequent nth control volume as 
zn = 
z0r

n for
n < N1, where N1 is the total number of control volumes in
z < 5d. The constant r is set to ensure that the size of the N1th
and (N1 + 1)th elements are identical. For 5d < z < 10d,
the sizes of the control volumes are uniform and given by

zi = 5d/N2, where N2 is the total number of control volumes
in 5d < z < 10d. We ensure that a sufficiently large number
(N1 + N2) of control volumes (3600–28 000) is applied for
all our calculations; see the discussion in Sec. VI.

We consider two cases of periodic heating on the surface
z = 0, where we apply (a) a heat flux boundary condition,
or (b) a temperature boundary condition. For case (a), we fix
the heat flux through the surface at J (0,t) = Jmaxcos(2πf t)
and calculate the corresponding 
Tmax at the surface. For
case (b), we fix the temperature on the surface at T (0,t) =

Tmaxcos(2πf t) and calculate the corresponding Jmax at the
surface. For both cases, we employ conservation of energy
to calculate the temperature profile of the semi-infinite solid

FIG. 2. The discretization scheme used in the derivation of the effective thermal conductivity at high heating frequencies. For z < 5d, the
nth control volume increases with z and given by an = a0r

n. For 5d < z < 10d, the size of the control volumes is constant.
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under periodic heating,

C
∂

∂t
T (z,t) = − ∂

∂z
J (z,t) . (15)

We use a control-volume formulation and a finite-difference
formulation to numerically solve Eq. (15), for cases (a) and (b),
respectively. Note that we apply nonlocal heat flux [Eq. (7)]
or nonlocal gradient of heat flux [Eq. (9)] in solving Eq. (15);
thus Eq. (15) is not a local equation.

V. MODIFIED CALLAWAY MODEL

To gain insights into the reduction of the apparent thermal
conductivity at high frequencies, we compare calculations of
the nonlocal theory to calculations of a modified Callaway
model [15,29], which we adopted from Morelli and co-
workers [30]. The modified Callaway model is based on
the Debye-Callaway formalism with a separate treatment of
the longitudinal and transverse phonon modes. We approxi-
mate the cutoff frequencies from the acoustic phonons at the
zone boundary along [100]. Our expressions of the modified
Callaway model differ slightly from those of Morelli et al.
[30], since we allow mode conversion between longitudinal
and transverse phonons for the normal three-phonon processes.
Our expressions are listed below:

� = �L + 2�T ,

�L = 1

3
CLT 3 (IL1 + βIL2) , (16a)

�T = 1

3
CT T 3 (IT 1 + βIT 2) ,

β =
(

IL2 + 2IT 2

IL3 + 2IT 3

)
, (16b)

IL1 =
∫ θL/T

0

τL
C (x) x4exdx

(ex − 1)2 , (16c)

IL2 =
∫ θL/T

0

τL
C (x) x4exdx

τL
N (x) (ex − 1)2 , (16d)

IL3 =
∫ θL/T

0

τL
C (x) x4exdx

τL
N (x) τL

R (x) (ex − 1)2 , (16e)

CL(T ) = k4
B

2π2�3vL(T )
, (16f)

where x = �ω/kBT is the normalized phonon frequency, �

is the Planck constant, ω is the frequency of phonons, kB is
the Boltzmann constant, T is the temperature, θL is the cutoff
frequency for longitudinal phonons, vL is the speed of sound
for longitudinal phonons, and the subscripts and superscripts

L denote longitudinal phonons. τC is defined as 1/τC =
1/τR + 1/τN ; 1/τR = 1/τU + 1/τI + 1/τB , where τU , τI ,
and τB denote the relaxation times for umklapp scattering,
Rayleigh scattering due to impurities in the crystals, and
boundary scattering, respectively. The corresponding integrals
IT 1, IT 2, and IT 3 have the same expressions as in Eq. (16),
except that the cutoff frequency and relaxation times are for
transverse phonons represented by subscripts and superscripts
T .

We deviate from the approach of Ref. [30] and substitute
a high-temperature expression for the scattering rate of the
N process τ−1

N = BNω2T . For simple crystals, we fix the
relative anharmonic scattering strengths of umklapp and
normal processes, BU and BN , by ratios of the phonon
velocities, Grüneisen constants, and cutoff frequencies, and
obtain absolute values of the anharmonic scattering strengths
from fits to the bulk thermal conductivities. For crystals
with compositional disorder, i.e., alloys, we assume a virtual
crystal and use the average values of volume, mass, speeds of
sound, cutoff frequencies, and thermal conductivities. We fit
calculations of the modified Callaway model to the thermal
conductivity of the virtual crystals to derive the anharmonic
scattering strengths BU and BN . We calculate the strength
of Rayleigh scattering in the alloys using the dimensionless
parameters 	mass and 	bond that we previously derived; see
Eqs. (1a) and (1b) of Ref. [31], that describe the strength
of phonon scattering by mass disorder and bond disorder,
respectively. We point out that this form of Rayleigh scattering
strength is likely to be incorrect [32] since the scattering
strength is not proportional to phonon density of states, as
required by the first-order perturbation theory [33]. However,
we continue to use this incorrect form of Rayleigh scattering
strength, because, in this paper, the purpose of the Callaway
model is only to systematically generate a wide range of
phonon mean-free paths. Since we compare calculations of the
nonlocal theory and the Callaway model using exactly identical
distributions of phonon mean-free paths, our conclusions
should not be affected by the exact forms of the scattering
strengths used in the model. The parameters that we used are
summarized in Tables I and II.

We define the mean-free paths of phonons by taking into
consideration both direct retardation to heat conduction by the
resistive scattering mechanisms (U process, Rayleigh scatter-
ing, and boundary scattering) and the indirect retardation by
the N process,

τ = τC + βτC/τN, (17a)

� = vτ = v (τC + βτC/τN ) . (17b)

TABLE I. The cutoff temperature, θL and θT , speed of sounds, vL and vT , and the parameter 	 for Rayleigh scattering
of Si, Ge, and Si0.9Ge0.1. For the crystals, the parameter 	mass is derived by assuming natural isotope composition.

Materials θL (K) θT (K) vL (m s−1) vL (m s−1) 	mass 	bond

Si 591 215 8440 5850 2.0 × 10−4 0
Ge 343 114 4910 3540 5.9 × 10−4 0
Si0.5Ge0.5 467 165 6670 4690 0.20 0.03
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TABLE II. The fitted values of Grüneisen constants, γL and γT , and the corresponding strengths of anharmonic
scattering, BU and BN , of Si, Ge, and Si0.9Ge0.1 derived using our approach.

Materials γL γT BL
U (s K−1) BT

U (s K−1) BL
N (s K−1) BT

N (s K−1)

Si 1.1 0.60 6.1 × 10−20 1.7 × 10−19 1.5 × 10−19 2.2 × 10−19

Ge 1.0 0.70 1.1 × 10−19 3.0 × 10−19 2.7 × 10−19 3.5 × 10−19

Si0.5Ge0.5 1.1 0.70 6.8 × 10−20 1.9 × 10−19 1.7 × 10−19 2.4 × 10−19

Mingo et al. [21] suggested that the frequency dependence
could be due to omission of harmonic phonons, which they
defined as phonons with anharmonic mean-free paths larger
than 3d. To test whether the frequency dependence of thermal
conductivity is due to insensitivity of the measurements to
harmonic phonons, we also define an anharmonic mean-free
path �anh that takes into consideration only the anharmonic
scattering,

�anh = v
[(

τ−1
U + τ−1

N

)−1 + βτC/τN

]
. (18)

For illustration purposes, we plot in Fig. 3 IL(z) of longitudinal
phonons in bulk Si, a 200-nm Si thin film, and bulk Si0.5Ge0.5

alloy using the relaxation times described here. From Fig. 3,
the distances z at which 1/e = 37% of the flux of longitu-
dinal phonons remains unscattered are 145, 65, and 1 nm
for Si, the Si thin film, and the Si0.5Ge0.5 alloy, respectively.

In this paper, we employ the modified Callaway model to
calculate the thermal conductivity of a series of hypothetical
Si crystals. To modify the spread of phonon mean-free paths
in the hypothetical Si, we vary the parameter 	 for Rayleigh
scattering from 	 = 2 × 10−4 to 	 = 2. The total relaxation
time and the mean-free path of phonons are then calculated
using Eq. (17). The same total relaxation time is applied in our
calculations of the nonlocal theory. We emphasize that since
we employ exactly identical phonon dispersion and scattering
in calculations of both models, our conclusions do not hinge
on the accuracy of the modified Callaway model.

10-3 10-2 10-1 100 101
0.1

1

10

100

Si Thin
  Film

Si
0.5

Ge
0.5

I L
(z
) (

%
)

z ( m)

Si

FIG. 3. (Color online) The percentage of flux of unscattered
longitudinal phonons IL(z) in bulk Si (solid lines), a 200-nm Si thin
film (dashed lines), and bulk Si0.5Ge0.5 alloy (dash-dotted lines). z is
the distance in the direction of temperature gradient.

VI. RESULTS

We solve the nonlocal theory for a semi-infinite solid using
(a) heat flux and (b) temperature boundary conditions, and plot
the calculated results as a function of the number of control
volumes and the heating frequency in Fig. 4. For alloys and
low frequencies, we find that the normalized amplitudes and
relative phases calculated for cases (a) and (b) yield identical
results when the number of control volumes is sufficiently
high; the ratios Jmax/Tmax are identical irrespective of whether
Dirichlet [case (a)] or Neumann [case (b)] boundary conditions
are applied. Since we apply different numerical schemes
[the finite-volume formulation for case (a) and the finite-
difference formulation for case (b)] and use different equations
[Eq. (7) for case (a) and Eq. (9) for case (b)], the agreement
between calculations of both cases supports the validity of the
derived model. However, for crystals at high frequencies, the
calculated values using the two different boundary conditions
differ, irrespective of the number of control volumes applied.
We do not know the origins of this discrepancy. We thus omit
three calculations with discrepancies between cases (a) and (b)
that are greater than 15%.

To test whether ballistic or harmonic phonons are re-
sponsible for the observed frequency dependence of thermal
conductivity, we compare the nonlocal calculations of �amp,
�out, and �in of the hypothetical Si with calculations using the
modified Callaway model that omits contribution from either
ballistic (� > 2d) or harmonic (�anh > 3d) phonons; see Fig. 5.
Here, we follow Mingo et al. [21] to define the harmonic
phonons as phonons that are not scattered by anharmonic
processes within a cutoff length η, i.e., phonons with �anh > η,
where �anh is the mean-free path considering on the anharmonic
scattering. For the ballistic case, we adjust the cutoff length
(� > 2d) to get good agreement between calculations obtained
using both models, while for the harmonic case, we use the
fitted cutoff value (�anh > 3d) by Mingo et al. [21]. We find that
for alloys, Callaway calculations omitting the ballistic phonons
(� > 2d) fit the calculations of the nonlocal theory well
for all effective thermal conductivities �amp, �out, and �in,
while Callaway calculations omitting the harmonic phonons
(�anh > 3d) severely overestimate the frequency dependence;
see Fig. 5. This result suggests that the frequency dependence
of apparent thermal conductivity of alloys could be adequately
approximated by the assumption that ballistic phonons do
not contribute to apparent heat conduction, as we previously
asserted [15].

Interestingly, we find that �out is almost independent of f

when 	 is small; see Fig. 5(b). The reason is that while the
amplitude of the calculated heat flux reduces with increasing
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FIG. 4. (Color online) (a),(b) The normalized amplitude (a) and relative phase (b) of heat flux calculated under prescribed heat flux
(case A, open symbols) and prescribed temperature (case B, solid symbols) at the surface, as a function of total number of control volumes in
the calculations, for two hypothetical Si with different Rayleigh scattering strengths 	. For a high 	 at a low heating frequency (squares, 	 = 2,
f = 104 Hz), calculations for cases A and B converge after sufficient numbers of control volumes. For a crystal at a high heating frequency
(circles, 	 = 2 × 10−4, f = 109 Hz), calculations for cases A and B do not converge. (c, d) The normalized amplitude (c) and relative phase
(d) of the calculated heat flux as a function of the heating frequency f , for the hypothetical Si with different 	, as labeled. If calculations with
prescribed heat flux (case A, open symbols) and with prescribed temperature (case B, solid symbols) differ by more than 15%, the calculations
are omitted in following analysis.

frequency, see Fig. 4(c), the relative phase diminishes; see
Fig. 4(d). Due to the compensating effects of the diminishing
amplitude and phase, �out is almost independent of f . Since
TDTR measurements are mostly sensitive to �out, this finding

is consistent with the lack of frequency dependence observed
in prior TDTR measurements of crystals.

To better illustrate our results, we plot nonlocal calculations
of the ratio of �amp, �out, and �in at f = 10 MHz to that at
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FIG. 5. (Color online) The apparent thermal conductivity calculated from (a) the amplitude �amp, (b) the out-of-phase �out, and (c) the
in-phase �in of heat flux calculated under prescribed heat flux (case A, open circles) and prescribed temperature (case B, solid circles), as a
function of the heating frequency f . The materials considered are hypothetical Si with different parameter 	 for Rayleigh scattering, as labeled.
The solid and dashed lines are the corresponding calculations using the modified Callaway model, assuming ballistic (� > 2d) and harmonic
(�anh > 3d) phonons do not contribute to heat conduction, respectively.
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FIG. 6. (Color online) Ratios of the apparent thermal conductiv-
ity of the hypothetical Si at 10 MHz (�10 MHz) to that at 0.3 MHz
(�0.3 MHz) calculated from the amplitude (open squares), the out-
of-phase (open triangles) and in-phase (open circles) of heat flux
using the nonlocal theory, as a function of spread of the mean-free
paths of phonons (�75% − �25%) in the hypothetical Si normalized
by the thermal penetration depth at 10 MHz (d10 MHz). The solid
triangles are TDTR measurements [15,29] on Si and SiGe, plotted
as a function of calculated (�75% − �25%)/d10 MHz. The solid circle is
derived from BB-FDTR measurements from Ref. [18]. The solid and
dashed lines are calculations using the modified Callaway model,
assuming ballistic (� > 2d) and harmonic (�anh > 3d) phonons do
not contribute to heat conduction, respectively. The solid diamond is
derived from first-principle calculations [19], assuming that ballistic
phonons (� > 2d) do not contribute to heat conduction.

f = 0.3 MHz in Fig. 6; the frequencies represent the upper
and lower frequency limits in most TDTR measurements.
We plot the ratio as a function of the normalized spread of
phonon mean-free paths (�75% − �25%)/d10 MHz used in the
calculations. Here, �75% and �25% are the mean-free paths of
phonons when the accumulated thermal conductivities (i.e.,
sum of the thermal conductivity by phonons with zero to the
specific mean-free path) are 75% and 25% of the steady-state
value respectively, while d10 MHz is the thermal penetration
depth d at 10 MHz. The rationale for the choice of the x

axis is that the reduction of the apparent thermal conductivity
depends strongly on the spread of the phonon mean-free
paths of phonons; the wider the spread of the mean-free
paths, the stronger is the reduction of the thermal conductivity
at high frequencies. Using our modified Callaway model
(�75% − �25%)/d10 MHz equals 0.075 and 125 for 	 = 2 × 10−4

(Si) and 	 = 2 respectively, while first-principle calculations
[20] of Si give (�75% − �25%)/d10 MHz = 1.5.

In Fig. 6, we also plot calculations of the ratios of the
effective thermal conductivities at f = 10 MHz and f =
0.3 MHz using the modified Callaway model, by excluding
either ballistic (� > 2d) or harmonic (�anh > 3d) phonons for
the respective frequencies. Comparison of the calculations of
the nonlocal and Callaway models in Fig. 6 clearly illustrates
that reductions in the � at high frequencies could be well
approximated, over a wide range of spread of phonon mean-
free paths, by the omission of ballistic phonons with � > 2d.

In Fig. 6, we also plot the TDTR [14,26] and BB-FDTR
[18] measurements of natural Si and SiGe alloys, as a

function of the normalized spread of phonon mean-free paths
(�75% − �25%)/d10 MHz calculated using the modified Callaway
model. We note that since the accuracy of the phonon mean-
free paths assumed in our Callaway model is disputable, the
comparison does not provide insights into the accuracy of the
measurements. We find that the nonlocal calculations agree
well with the prior TDTR measurements [15,29] on natural Si
and SiGe. Notably, the reduction of the thermal conductivity
measured by BB-FDTR [18] on natural Si is significantly
more pronounced compared to the TDTR measurements.
Comparison with our nonlocal calculations indicates that the
discrepancy between the TDTR and BB-FDTR measurements
on Si is not due to different ways the data are analyzed in
TDTR and BB-FDTR, since the disparity between derived
�amp, �out, and �in values is substantially smaller than the
difference between the TDTR and BB-FDTR measurements.
Potential problems of the BB-FDTR measurements [18] are
discussed by Wilson and Cahill in Ref. [22].

VII. CONCLUSION

In summary, we present a nonlocal theory that governs
heat transfer at high frequencies, e.g., in TDTR and BB-
FDTR measurements, and high-frequency electronic devices.
Comparison of calculations of the nonlocal theory and a
modified Callaway model suggests that while the amplitude
of heat conduction at high frequencies can be conveniently
approximated using an effective thermal conductivity reduced
by omitting ballistic phonons with � > 2d, the relative phase
between temperature and heat flux oscillation, especially
for pure crystals at high frequencies, is no longer π/4 and
cannot be easily estimated. Thus, simple interpretation of
omitting ballistic phonons with mean-free paths larger than
the penetration depth is only a good approximation for
measurements on alloys and is not justified for TDTR and
BB-FDTR measurements on pure crystals, since the measure-
ments also depend on the phase of the induced temperature
oscillations.

We note the limitations of our nonlocal model. (1) Our
model is only valid when the size of the heat source is
significantly larger than the mean-free paths of the heat
carriers, and thus it cannot explain the spot size dependence
of measurements of apparent thermal conductivity. (2) In our
model, it is assumed that the interfacial thermal resistance is
negligible and phonons are thermalized at the interfaces. While
this is a reasonable assumption for high-energy phonons at
room temperature, low-energy phonons might not be scattered
at the interfaces [26,34], and thus not thermalized. As a
result, the apparent thermal conductivity measured at high
frequencies could be dominated by the interfacial effects [22],
especially at low temperatures. In such cases, a much more
pronounced frequency dependence could be observed.
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